PHA 2307 Hidrologia Aplicada Universidade de São Paulo

Escola Politécnica

Departamento de Engenharia Hidráulica e Ambiental

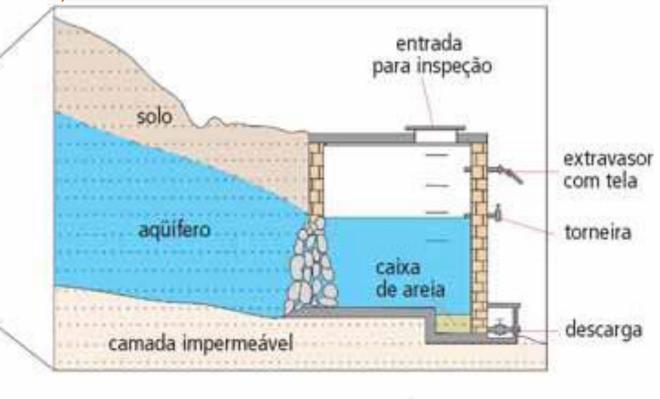
Água Subterrânea Parte 2 de 2

Aula 25 - 2015

Prof. Dr. Arisvaldo Méllo Prof. Dr. Joaquin Garcia Prof. Dr. Marco Palermo

Objetivos da Aula

- 1. Conhecer como se capta a Água Subterrânea
- 2. Conhecer métodos de Perfuração de Poços
- 3. Comparar Custos de Aproveitamento de Água
- 4. Aprender os conceitos de Transmissividade e Coeficiente de Armazenamento
- 5. Aprender e aplicar a Fórmula de Theis, para dois casos:
 - Cálculo da produção e do rebaixamento de poços (problema direto)
 - Ensaio de bombeamento para determinação dos parâmetros T e S (<u>problema inverso</u>)

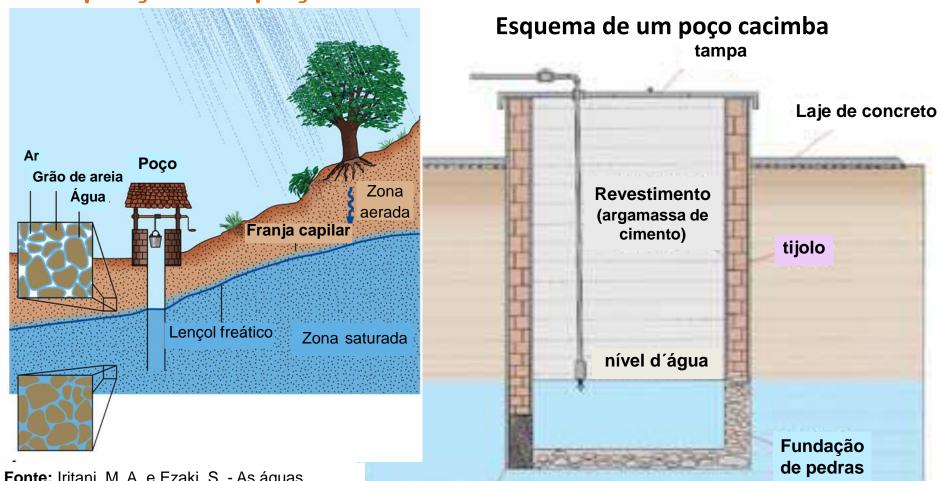


Como Captar a Água Subterrânea

Captação de água de nascente (adaptado de CETESB [s/data] -

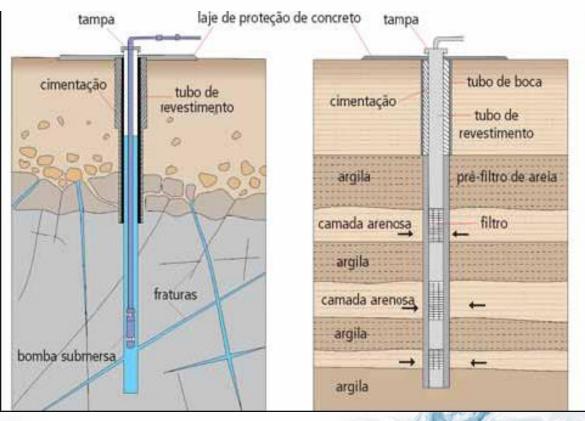
Água para consumo humano).

nascente


Fonte: Iritani, M. A. e Ezaki, S. - As águas subterrâneas do Estado de São Paulo. Cadernos de Educação Ambiental. São Paulo: Secretaria de Estado do Meio Ambiente - SMA, 2008.104p.

Como Captar a Água Subterrânea

Captação em poços rasos ou cacimba


Anel de concreto

Fonte: Iritani, M. A. e Ezaki, S. - As águas subterrâneas do Estado de São Paulo. Cadernos de Educação Ambiental. São Paulo: Secretaria de Estado do Meio Ambiente - SMA, 2008.104p.

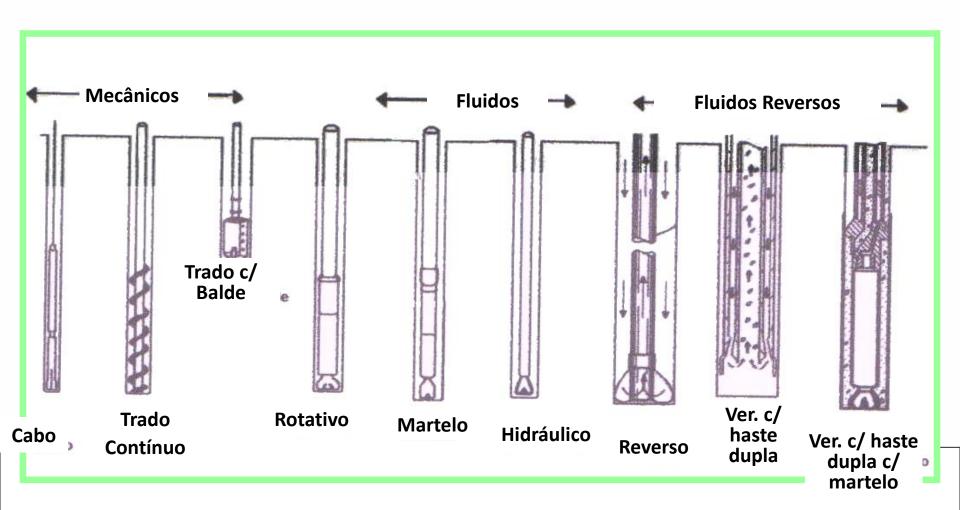
Como Captar a Água Subterrânea

Poços Tubulares Profundos construídos em aquíferos fraturado e sedimentar

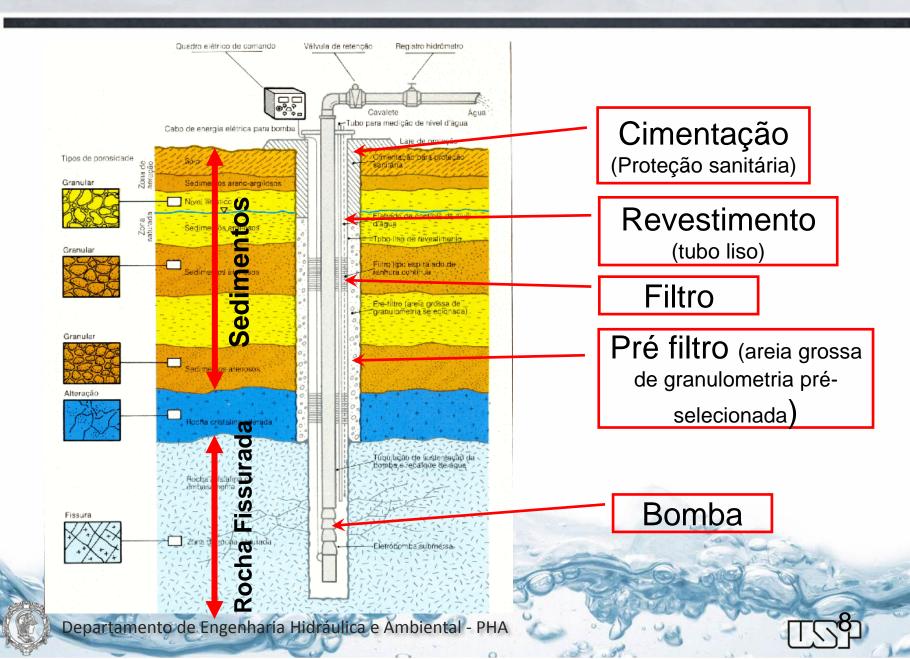
Fonte: Iritani, M. A. e Ezaki, S. - As águas subterrâneas do Estado de São Paulo. Cadernos de Educação Ambiental. São Paulo : Secretaria de Estado do Meio Ambiente - SMA, 2008.104p.

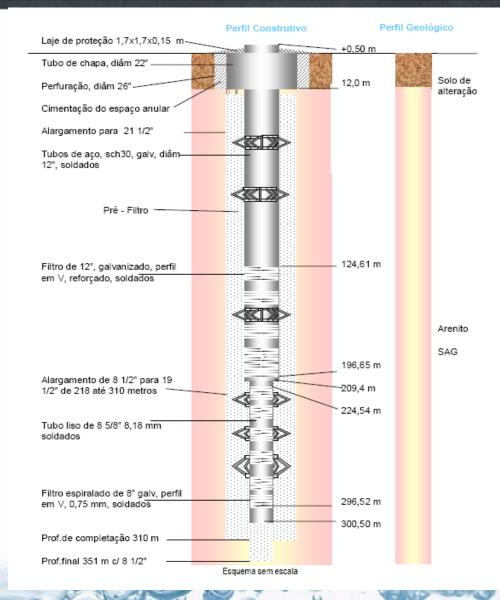
Fonte: www.euwfd.com/html/groundwater.htm

Sonda Rotativa Perfurando no Sistema Aquífero Guarani, em Avaré – SP – Brasil. Sistema - circulação direta


Tipos ou Métodos de Perfuração de Poços

- Sistemas Mecânicos
 - Percussão a cabo
 - Testemunhagem continua
 - Balde de testemunhagem
- Sistemas com Circulação Direta do Fluido
 - Rotativo com circulação Direta
 - Martelo ou Down the Hole
 - Hidráulico
- Sistemas com Circulação Reversa do Fluido
 - Rotativo com circulação Reversa
 - Rotativo com circulação Reversa com Haste dupla
 - Rotativo com circulação Reversa com Haste dupla e martelo


Tipos ou Métodos de Perfuração de Poços



Poço Profundo. Exemplo

Poço Profundo Exemplo

Bariri SP

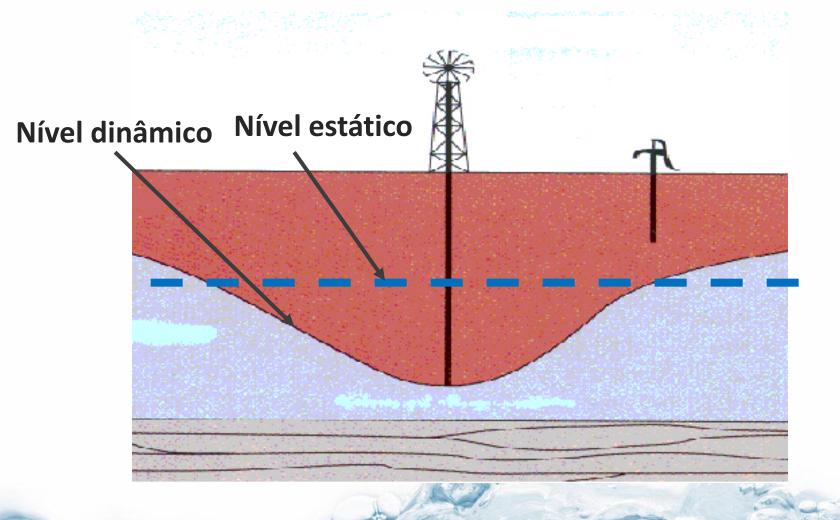
Comparação de Custos de Aproveitamento de Água

Custos Internacionais da Água (não inclusos seu transporte).

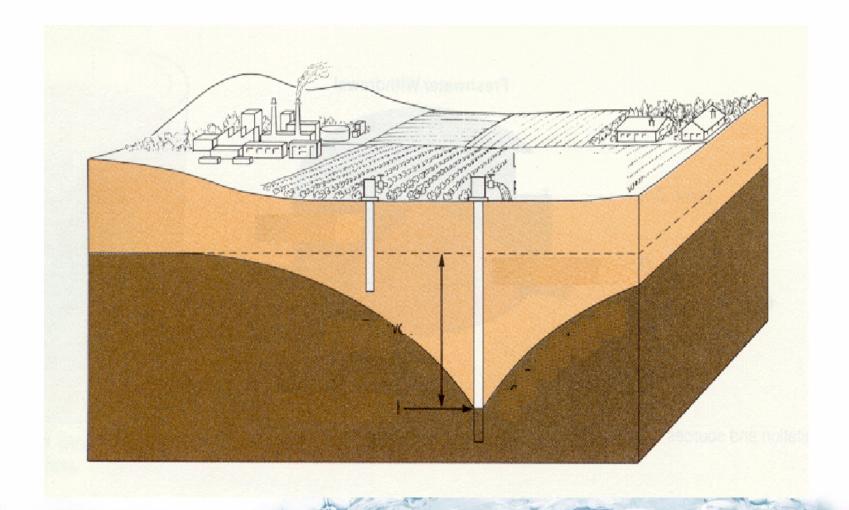
TECNOLOGIAS	CUSTOS		
	US\$ por mil m ³		
Captação de Rios	\$ 123 a \$ 246		
Só armazenamento			
Osmose Reversa	\$ 120 a \$ 397		
Água Salobra			
Eletrodiálise	\$ 276 a \$ 537		
Reuso de Esgoto Doméstico	\$ 200 a \$ 485		
Captação de Água Subterrânea	\$ 80 a \$ 88		
Poços Tubulares			

Fonte: Águas Doces do Brasil – (Rebouças et. al.) – 2002 apud Orientações Para a Utilização de Águas Subterrâneas no Estado de São Paulo – Fiesp, 2005

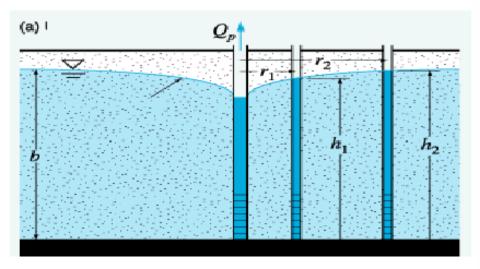
Aquíferos Confinados e livres


área de recarga do aquífero confinado superfície piezométrica do aquífero confinado lençol freático aquiclude aquífero confinado

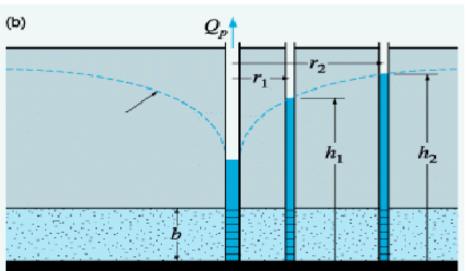
Poço Artesiano Jorrante



Exploração de Águas Subterrâneas Poços Tubulares

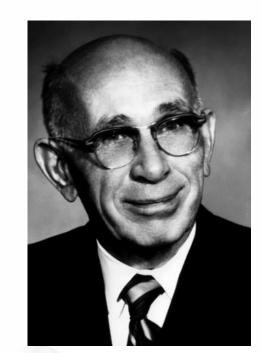


Cone de Depressão



Cone de Depressão

Aquífero freático: a linha piezométrica coincide com a superfície de saturação (lençol freático)



Aquífero confinado: está sempre saturado, a linha piezométrica está sempre acima do limite do aquífero

Exploração de Poços Profundos em Regime não Permanente

Charles Vernon Theis (1900-1987) United States Geological Service (1935)

Produção de um Poço: Fórmula de Theis

Regime não permanente

Aquífero confinado

Vazão Q usualmente em m³/h

Quanto maior a vazão Q, maior a depressão do cone Quanto mais tempo bombeia, maior a depressão do cone

$$Q = f(z, t)$$

A função é definida quando se conhecem dois parâmetros básicos:

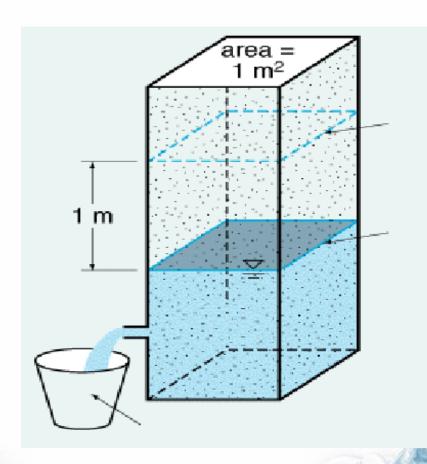
- □ T: transmissividade do aquífero e
- S: coeficiente de armazenamento do aquífero

Transmissividade

$T = K \cdot Y$

T: transmissividade do aquífero (m²/dia)

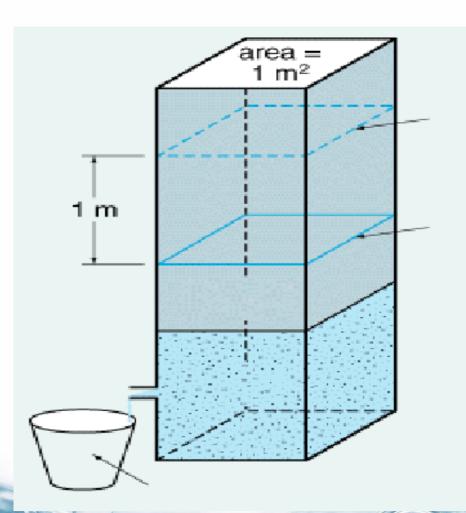
Y: espessura do aquífero (m)


K: condutividade hidráulica (m/dia)

Coeficiente de Armazenamento

Aquífero Freático

Coeficiente de **Armazenamento S**


É o volume de água liberado por unidade de área do aquífero quando a linha piezométrica (aproximada ao lençol freático) abaixa 1 m

Coeficiente de Armazenamento

Aquífero Confinado

Coeficiente de armazenamento S

É o volume de água liberado por unidade de área do aquífero quando a linha piezométrica abaixa 1 m

Equação do Poço de Theis

$$z = \frac{Q}{4 \cdot \pi \cdot T} W(u) \qquad Q = f(z, t)$$

W(u) não pode ser integrada explicitamente...
O desenvolvimento em série resulta:

$$W(u) = -0.5772 - \ln(u) + u - \frac{u^2}{2 \cdot 2!} + \frac{u^3}{3 \cdot 3!} \dots$$

onde:
$$U = \frac{r^2 S}{4 \cdot T \cdot t}$$

Equação Simplificada (Jacob)

Quando "u" é pequeno (u < 0,1):

$$z = \frac{Q}{4 \cdot \pi \cdot T} \left[-0.5772 - \ln(u) \right]$$

$$z = \frac{Q}{4 \cdot \pi \cdot T} \left[-0.5772 - \ln \left(\frac{r^2 S}{4 \cdot T \cdot t} \right) \right]$$

z: rebaixamento em um poço de observação (m)

T: transmissividade (m²/dia)

S: coeficiente de armazenamento (-)

r: distância ao poço de observação (m)

t: tempo contínuo de bombeamento (dia)

Aplicações Práticas da Fórmula de Theis

- Cálculo da produção e do rebaixamento de poços (problema direto)
- Ensaio de bombeamento para determinação dos parâmetros T e S (problema inverso)

Exemplo: Cálculo da produção e do rebaixamento de poços

Problema direto

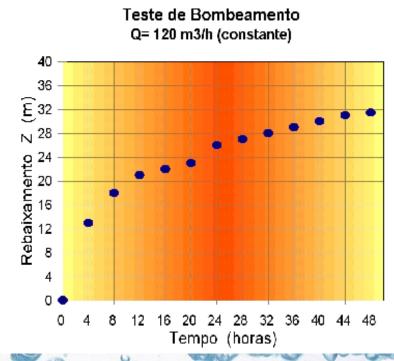
Um poço está localizado em um aquífero cuja condutividade hidráulica é de 15 m/dia e o coeficiente de armazenamento 0,005. O aquífero tem 20 m de espessura e está sendo bombeado com uma vazão constante de 2500 m³/dia. Qual é o rebaixamento a uma distância de 7 m do poço após um dia de bombeamento?

$$z = \frac{Q}{4 \cdot \pi \cdot T} \left[-0.5772 - \ln \left(\frac{r^2 S}{4 \cdot T \cdot t} \right) \right]$$

$$T = 20 \text{ m} \times 15 \text{ m/dia} = 300 \text{ m}^2/\text{dia}$$

7,92
$$2500 \text{ m}^3/\text{dia} = 104 \text{ m}^3/\text{h} = 29 \text{ l/s}$$

$$Z = \frac{2500 \text{ m}^3/\text{dia x 7,92}}{4 \text{ x } \pi \text{ x 300 m}^2/\text{dia}} = 5,2 \text{ m}$$


Ensaio de bombeamento

Determinação dos parâmetros T e Ş (problema inverso)

$$z = \frac{Q}{4 \cdot \pi \cdot T} \left[-0.5772 - \ln \left(\frac{r^2 S}{4 \cdot T \cdot t} \right) \right]$$

Determinar T e S a partir de um conjunto de rebaixamentos (Z) da linha piezométrica em um poço de observação à distância r do poço de exploração, ao longo do tempo t, para uma vazão constante Q

VALC	VALORES OBSERVADOS						
t(h)	t (dias)	Zobs					
1	0.0417	0.60					
2	0.0833	1.40					
3	0.1250	2.40					
4	0.1667	2.90					
5	0.2083	3.30					
6	0.2500	4.00					
8	0.3333	5.20					
10	0.4167	6.20					
12	0.5000	7.50					
18	0.7500	9.10					
24	1.0000	10.50					
48	2.0000	###########					

Ensaio de bombeamento

Solução do problema inverso

Adotar valores iniciais de T e S na equação:

$$z = \frac{Q}{4 \cdot \pi \cdot T} \left[-0.5772 - \ln \left(\frac{r^2 S}{4 \cdot T \cdot t} \right) \right]$$

VALO	DRES OBSE	RVADOS	VALORES CALCULADOS				
t(h)	t (dias)	Zobs	Zcalc	Desv^2	u	ln(u)	W(u)
1	0.0417	0.60	-0.72	1.752	0.8315	-0.18457	-0.39263
2	0.0833	1.40	0.55	0.716	0.4157	-0.87772	0.30052
3	0.1250	2.40	1.30	1.208	0.2772	-1.28319	0.70599
4	0.1667	2.90	1.83	1.143	0.2079	-1.57087	0.99367
5	0.2083	3.30	2.24	1.119	0.1663	-1.79401	1.21681
6	0.2500	4.00	2.58	2.021	0.1386	-1.97633	1.39913
8	0.3333	5.20	3.11	4.375	0.1039	-2.26402	1.68682
10	0.4167	6.20	3.52	7.185	0.0831	-2.48716	1.90996
12	0.5000	7.50	3.86	13.282	0.0693	-2.66948	2.09228
18	0.7500	9.10	4.60	20.225	0.0462	-3.07495	2.49775
24	1.0000	10.50	5.13	28.806	0.0346	-3.36263	2.78543
48	2.0000	#########	6.41	41.091	0.0173	-4.05578	3.47858

Utilizar o "solver" para determinar T e S

